学术动态
Academic News
热点新闻
管理理论前沿系列讲座第43期:休斯顿大学谭寅亮副教授
应管理学院运营与财务管理研究所王康周教授邀请,美国休斯顿大学鲍尔商学院谭寅亮副教授将于我院举办学术讲座。欢迎感兴趣的师生积极参加!
主 题:When to Play Your Advertisement? Optimal Insertion Policy of Behavioral Advertisement(什么时候播放你的广告?行为广告的最优插入策略)
主讲人:谭寅亮 副教授
主持人:王康周 教授
时 间:2022年3月1日(周二)10:00-12:00
地 点:腾讯会议(会议ID 581 487 497)
直播链接:https://meeting.tencent.com/l/ccX4xm8Fpaee
讲座简介:
Digital advertisements offer a full spectrum of behavioral customization for timing and content capabilities. The existing research in display advertising has predominantly concentrated on the content of advertising; however, our focus is on optimizing the timing of display advertising. In practice, users are constantly adjusting their engagement with content as they process new information continuously. The recent development of emotional tracking and wearable technologies allows platforms to monitor the user’s engagement in real time. We model the user’s continuous engagement process through a Brownian motion. The proposed optimal policy regarding the timing of behavioral advertising is based on a threshold policy with a trigger threshold and target level. Specifically, the platform should insert the advertisement when the user’s engagement level reaches the trigger threshold, and the length of the advertisement should let the user’s engagement level drop to the target level. Analogous to the familiar idea of “price discrimination,” the methods we propose in this study allow the platforms to maximize their revenue by “discriminatory” customization of the timing and length of the advertisement based on the behavior of individual users. Finally, we quantify the benefits of the proposed policy by comparing it with the practically prevalent policies (i.e., pre-roll, mid-roll and a mix of the two) through a simulation study. Our results reveal that for a wide range of settings, the proposed policy not only significantly increases the platform’s profitability, but also improves the completion rate at which consumers finish viewing the advertisement.
数字广告在时间和内容功能上能够提供全方位的行为定制。现有对广告展示的研究主要集中在广告内容上,但我们关注于优化广告展示的时机。在现实中,用户在不断处理新信息时会不断调整他们对内容的参与度。情绪跟踪和可穿戴技术的最新发展让平台可以实时监控用户的参与度。我们使用布朗运动对用户的持续参与过程进行建模。所提出的关于行为广告时机的最优策略是基于具有触发阈值和目标水平的阈值策略。具体来说,平台应该在用户的参与度达到触发阈值时插入广告,广告的时长应该让用户的参与度下降到目标水平。类似于熟悉的“价格歧视”概念,我们在本研究中所提出的方法允许平台通过根据个人用户的行为,“有区别地”定制广告的时间和时长来最大化平台收益。最后,通过仿真将我们所提策略与实际现有策略(即前贴片广告、插播广告和两者的混合)进行比较,从而量化了我们所提策略的好处。结果表明,在大部分情况下我们所提出的最优策略不仅显著提高了平台的盈利能力,而且还提高了消费者观看广告的完成率。
主讲人简介:
谭寅亮,美国休斯顿大学鲍尔商学院决策和信息科学终身教授、鲍尔讲席教授、供应链管理方向系主任。此前在美国杜兰大学弗里曼商学院管理科学方向担任助理教授,戈德林国际教育中心行政主任,并获得终身教授与讲席教授职位。谭寅亮副教授毕业于美国佛罗里达大学沃灵顿商学院,学习运营管理及信息系统。他拥有丰富的商业分析方面的教学经验,获得过弗里曼商学院年度最佳教师奖。其研究兴趣主要集中在科技管理与创新,电子产品定价,以及人工智能领域。在国际顶级期刊Management Science, MIS Quarterly, Information Systems Research, Production and Operations Management, Decision Science 等多次发表论文,并获得国际决策科学年会的最佳论文奖。谭寅亮副教授现在担任Production and Operations Management (国际顶级期刊)资深编辑、Decision Science副编辑,于2019年被评为世界最佳40名40岁以下的商学院教授,也是杜兰大学历史上第一个获此殊荣的教授。